
Tension-Actuated, Multi-Jointed Compliant Finger Analysis 

Analysis by Joshua Gafford 

1 Objective 
The motivation is to create a static analytical model of a cable-actuated, multi-jointed finger, with 

alternating structural and flexural sections, to obtain quantitative values for output force and deflection vs. 

input tensioning force. The model will be coded in MATLAB such that parameters and material 

properties can be altered to observe the theoretical performance of the finger pre-manufacturing. This 

model will assist in the design of underactuated finger mechanisms via 3D-printing or shape deposition 

manufacturing (SDM). The model presented herein is linear, and as such, the scope is limited and 

quantitative results should be interpreted with caution for large deformations. Regardless it can be used to 

compare different finger geometries, materials and configurations in terms of relative performance. 

1.1 Model Limitations 
The model derived herein assumes a linear-elastic relationship between the stress and strain of the 

compliant joint material based on an effective elastic modulus. However the materials used in flexible 

joints are typically non-linear and viscoelastic, and as such, are more accurately modeled by Mooney-

Rivlin or Neo-Hookean material models, which introduce more complexity in terms of defining material 

parameters. A comparison between a linear-elastic approximation and a Mooney-Rivlin model for 

Urethane is shown in Figure 1, and we can see how the two approximations deviate at larger strains. As 

such, this model is intended to be a qualitative evaluation tool that can be used to quickly compare 

different finger geometries.  

 

Figure 1. Comparison of linear-elastic and Mooney-Rivlin models for urethane 

2 Theory 

2.1 Deflection 
An illustration of a tendon-driven finger with a single compliant joint is shown in Figure 2. The finger 

consists of a rigid section (subscript s) and a flexible section (subscript f). The finger is actuated by a 

tension force T which establishes a moment about the compliant joint. 



 

Figure 2. Illustration of simplified cable-driven finger model under cable tension 

The simplified model assumes that the deformation behavior is dominated by an applied moment Th 

at the distal end of the finger and contributions from gravity and reaction forces in the x-direction are 

negligible. We can use superposition to determine the overall deflection at the distal end of the finger by 

propagating internal moments back to the proximal end. Let    denote the deflection between section i 

and section i-1, and let    denote the angle between section i and section i-1. Given a moment at the distal 

end of the finger resulting from cable tensioning: 
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To find the global coordinates of each section (which we’ll denote    for deflection in the y-direction and 

   for displacement in the x-direction), we need to add contributions from previous relative deflections 

and account for rotations due to the angle of the previous member. We can use homogenous 

transformation matrices for this task. Assuming we have a point described by  ⃑  that we want to rotate 

about another point  ⃑  by an angle α to obtain the point’s coordinates in a global frame, we must first 

translate the point  ⃑  back to the origin, perform the rotation, and translate back to  ⃑ . The sequence 

looks like the following 

 ⃑      ⃑          ⃑    ⃑  (3) 

where  ⃑  is the point’s coordinates in the global frame,     ⃑   and     ⃑   are transformation matrices 

dependent on the intermediate point  ⃑ , and      is a rotation matrix dependent on angle α. Rewriting in 

terms of previously-defined nomenclature: 
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This model can be extended to an arbitrary number of joints N. 

2.2 Tip Force 
The reaction force at the distal end of the finger is dependent on the cable mounting scheme. We 

consider two cases as below. A direct-through mounting scheme (left) results in a pure moment about the 

flexural joints, as the tension force is in-line with the axis of the finger. A top mounted scheme (right) 

results in a capstan-like effect dependent on contact angle  . 



 

Figure 3. Cable mounting schemes, (left) direct-through resulting in pure moment, and (right) top-mount that results in a capstan 

effect 

2.2.1 Direct-Through 

For the first case, consider a simplified cantilever model shown below in Figure 4. The reaction force 

at the distal end of the beam is denoted      and is generated by an applied moment   . The model is 

statically indeterminate, meaning the reaction forces can’t be solved by equilibrium equations alone.  

 

Figure 4. Simplified model of statically-indeterminate cantilever beam 

To solve for      we use the superposition method where we (1) remove the reaction force and 

consider deflection    due to the moment, and (2) remove the moment and consider deflection     due to 

the reaction force, and (3) sum the two deflections and equate to zero to solve for     . 
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Since the E and I drop out of the equation, we don’t need to consider interactions between the 

alternating stiff and flexible sections to obtain the overall load at the distal end of the finger. Re-writing in 

terms of previously-defined terminology: 
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2.2.2 Top-Mounting 

The reaction force is modeled by the capstan equation, which is reproduced below: 

           (10) 

where   is the contact angle (see Figure 3) and   is the coefficient of static friction between the cable and 

the sheath.  

2.3 Parasitic Capstan Effects 
For higher fidelity, we can consider ‘parasitic capstan’ effects. This describes the phenomenon that, 

when the finger is actuated and begins to curve, the frictional force between the cable and the stiff 

segments increases, which detracts from the transmission ratio of the system.  

 

Figure 5. Parasitic capstan effects as the finger assumes a curved profile 

The implication of this phenomenon is that the reaction force experiences diminishing returns given 

greater end deflections due to this parasitic effect. As this effect increases with increasing curvatures, we 

can model it as a parasitic capstan effect dependent on relative angle between subsequent segments in the 

kinematic chain. Thus we can refine the distal forces from Equations (9) as the following: 

     
   

 ∑   
  
   

∏             

    

   
      

 
(11) 

Similarly, for the top-mounted scheme, the distal force becomes: 
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3 Results 
Results of the analysis, for arbitrary materials and dimensions, are given below. Figure 6 is a 

screencap of the deformed shape for three different loading conditions for N=3 joints. Figure 7 shows the 

results of the analytical model overlaid on top of SDM empirical models with identical characteristics, 

showing good correlation between results. 



 

Figure 6. Simulation results for a 3-jointed finger with variable joint stiffness. (clockwise from top) deflection visualization of 

finger, von-mises stress of joint reinforcement flexures, and transmission ratio. 

 

Figure 7. Comparison of analytical model with SDM-fabricated finger prototypes, showing good agreement for a variety of 

different finger configurations. 
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5 Source Code 
Note that this code also uses arrow.m which can be downloaded from the MathWorks website. 

5.1 Analysis Initialization Function 
function null = Analysis_Init_Custom() 

% Written by: Joshua Gafford 

% Written on: March 3, 2013 

% 

% Description 

%This function initializes the compliant, multi-jointed finger bending 

%analysis. Geometric and material parameters are defined herein, and the 

%analysis iterates through each joint to compute the overall bend profile 

%and distal reaction force. The user may select to run through a ramp or 

%sinusoidal loading profile, and save the results to an .avi movie. 

%  

% Notes 

%This model includes a stress calculation for any steel reinforcement 

%flexures embedded into the elastomer based on a simple von mises analysis. 

%If no reinforcement flexures are being built into the finger, disregard 

%this information 

  

close all;clear all;clc;clf; 

  

% User Parameters 

Moment=0;   % Cable mounting case, 1=direct through, 0=top mount 

angle=0;    % Cable angle for moment=0 

  

% Flexible Joint Parameters 

%From proximal to distal 

lf=[6.5E-3;6.5E-3;6.5E-3];          % segment length [m] 

tf=[.150E-3;.050E-3;.050E-3;];      % steel reinforcement flexure thickness [m] 

tp=[2.65E-3;1.65E-3;2.15E-3];       % polymer flexure thickness 

wf=3E-3;                            % width of steel flexible section [m] 

wp=6E-3;                            % width of polymer flexible section [m] 

If=wf.*(tf.^3)/12;  % Second moment of area of steel [m^4] 

Ip=wp.*(tp.^3)/12;  % Second moment of area of polymer 

Ef=0E9;             % Young's Modulus of steel flexible section [Pa] 

Ep=13.8E6;          % Young's Modulus of polymer flexible section [Pa] 

mu=0.3; 

  

% Structural Segment Parameters 

%From proximal to distal 

ls=[13.5E-3;9E-3;7.5E-3];    % length of stiff section [m] 

ts=[6.0E-3;6.0E-3;6.0E-3];     % thickness of stiff section [m] 

ws=6E-3;            % width of stiff section [m] 

Is=ws.*(ts.^3)./12; % Second moment of area [m^4] 

Es=2E9;             % Young's Modulus of stiff section [Pa] 

h=2E-3;           % Distance between cable and attachment [m] 

  

prevDim=[]; 

  

% Select loading profile (ramp or sine) 

disp('Please define all custom properties in the .m file'); 

str=input('Loading Profile? Ramp [r] Sine [s]','s'); 

switch str 

    case 's' 

        [amplitude]=input('Input Force Amplitude? [N]'); 

        [frequency]=input('Resolution? [N]'); 

        [Ncycles]=input('Number of Cycles?'); 

         L=(amplitude/2)-(amplitude/2)*cos([0:frequency:2*pi*Ncycles]); 

    case 'r' 

        [amplitude]=input('Input Force Amplitude? [N]'); 

        [frequency]=input('Resolution? [N]'); 

        L=0:frequency:amplitude; 

    otherwise 

end 

  

% Ask user if movie should be saved 



% movstr=input('Save Movie? [y/n]','s'); 

movstr='n'; 

switch movstr 

    case 'y' 

        filestr=input('Filename?','s'); 

        moviesave=1; 

    case 'n' 

        moviesave=0; 

    otherwise 

end 

N=length(lf);   % Number of Joints 

  

% allocating space for local deflection and slope vector 

theta=zeros(length(N*2),1); 

delta=zeros(length(N*2),1); 

  

deflection=zeros(length(L),1);  % global tip deflection vector 

  

% Initialize Figure 

figure(1) 

fig = figure('position',[100 100 850 600]);  

for ii=1:length(L); 

    clf; 

    shrinkVec=[]; 

    if Moment==1; 

        for i=N:-1:1    

            keffd=2*Ef*If(i)/(lf(i)^2)+2*Ep*Ip(i)/(lf(i)^2); 

            delta(2*i)=-L(ii)*h*(ls(i)^2)/(2*Es*Is(i)); 

            delta(2*i-1)=-L(ii)*h/keffd; 

             

            kefft=Ef*If(i)/(lf(i))+Ep*Ip(i)/(lf(i)); 

            theta(2*i)=L(ii)*h*ls(i)/(Es*Is(i)); 

            theta(2*i-1)=L(ii)*h/kefft; 

        end 

    else 

        for i=N:-1:1 

            L_adj=L(ii)/(exp(mu*pi/2)); 

            keffd=3*Ef*If(i)/(lf(i)^3)+3*Ep*Ip(i)/(lf(i)^3); 

            delta(2*i)=-L_adj*cos(angle)*(ls(i)^3)/(3*Es*Is(i)); 

            delta(2*i-1)=-L_adj*cos(angle)/keffd; 

             

            kefft=2*Ef*If(i)/(lf(i)^2)+2*Ep*Ip(i)/(lf(i)^2); 

            theta(2*i)=L_adj*cos(angle)*(ls(i)^2)/(2*Es*Is(i)); 

            theta(2*i-1)=L_adj*cos(angle)/kefft; 

        end 

    end 

    % create vector for global section deflection and x-displacement 

    delta_sum=zeros(length(delta),1); 

    delta_sum(1)=delta(1); 

    lengthvec=zeros(length(delta),1); 

    lengthvec(1)=lf(1); 

     

    % add contributions from local deflections, slopes 

    for j=2:1:length(delta) 

        if ~mod(j,2) 

%             compression=L(ii)*ls(ceil(j/2))/(Es*ws*ts(ceil(j/2))); 

            compression=0; 

            % find coordinates for next point by HTM 

            [lengthvec(j) delta_sum(j)]=transform(lengthvec(j-1),... 

                  delta_sum(j-1),lengthvec(j-1)+ls(ceil(j/2))-compression,delta_sum(j-1)... 

                  +delta(j),-sum(theta(1:j-1))); 

        else 

%             compression=L(ii)*lf(ceil(j/2))/(Ef*wf*tf(ceil(j/2))); 

            compression=0; 

            % find coordinates for next point by HTM 

            [lengthvec(j) delta_sum(j)]=transform(lengthvec(j-1),... 

                  delta_sum(j-1),lengthvec(j-1)+lf(ceil(j/2))-compression,delta_sum(j-1)... 

                  +delta(j),-sum(theta(1:j-1))); 

        end 

    end 

     



    % insert zero at boundary 

    lengthvec=[0;lengthvec]; 

    delta_sum=[0;delta_sum]; 

     

    % Finger deflection visualization 

    subplot(2,1,1); 

    plot(lengthvec,delta_sum,'-o','LineWidth',2);grid on;hold on; 

    % plot rectangles for stiff sections, vectors for load values 

    for k=1:length(lengthvec)-1; 

        % only plot rectangles for stiff sections 

        if ~mod(k,2) 

            % only plot vectors on last section 

            if k==length(lengthvec)-1 

                term=1; 

            else 

                term=0; 

            end 

            if Moment==1 

                tipload(ii)=3*L(ii)*h./(2*lengthvec(end)*(exp(0.3*(pi/2))+exp(0.3*sum(theta))));  

% tip load 

                stress(ii)=L(ii)*h*(tf(1)/2)/(If(1)); 

            else 

                tipload(ii)=cos(angle)*L(ii)/(exp(0.3*(pi/2))+exp(0.3*sum(theta))); 

                sig11=-3*delta_sum(2)*Ef*(tf(1)/2)/(lf(1)^2); 

                sig22=L(ii)*sin(angle)/(tf(1)*wf); 

                Q=(tf(1)/4)*(wf)*tf(1)/2; 

                tau12=(L(ii)*cos(angle)*Q)/(If(1)*tf(1)); 

                stress(ii)=sqrt(sig11^2-sig11*sig22+sig22^2+3*(tau12^2)); 

            end 

            [x_bl x_br]=drawRect(0,0,lengthvec(k),delta_sum(k),ts(ceil(k/2)),... 

                ls(ceil(k/2)),sum(-theta(1:k)),term,L(ii),tipload(ii));hold on; 

            shrinkVec=[shrinkVec;x_bl x_br]; 

            set(gca,'FontSize',13); 

            xlabel('X-Dimension [m]');ylabel('Y-Dimension [m]'); 

        else 

            continue; 

        end 

    end 

    deltaVec(ii)=ChangeInLength(shrinkVec,lengthvec); 

     

     

    axis equal; 

    deflection(ii)=delta_sum(end); %extract global deflection of last section   

     

    % Transmission Ratio Plot 

    subplot(2,2,3) 

    plot(L(1:ii),tipload(1:ii),'r-^','LineWidth',2);hold on;grid on; 

     set(gca,'FontSize',13); 

    xlabel('Input Tension Force [N]');ylabel('Output Distal Force [N]'); 

     

    % Reinforcement Flexure Stress Plot 

    subplot(2,2,4) 

    plot(L(1:ii),stress(1:ii)./(10^6),'r-^','LineWidth',2);hold on;grid on; 

    line([min(L) max(L)],[610 610],'LineWidth',2,'LineStyle','--');hold on; 

    set(gca,'FontSize',13); 

    xlabel('Input Tension Force [N]');ylabel('Max Von Mises Stress [MPa]'); 

    F(ii)=getframe(fig); 

end 

if moviesave==1 

    movie2avi(F, strcat(filestr,'.avi'),'compression','None'); 

else 

end 

% Uncomment the following for individual plots 

%plot results 

% figure(2) 

% plot(L,tipload,'-r^','LineWidth',2);grid on;hold on; 

% set(gca,'FontSize',13); 

% xlabel('Input Tension Force [N]');ylabel('Output Distal Force [N]'); 

% figure(3) 

% plot(L,deflection,'-bo','LineWidth',2);grid on; 

% set(gca,'FontSize',13); 



% xlabel('Input Tension Force [N]');ylabel('Output Deflection [m]'); 

% figure(3) 

% plot(-deflection,tipload,'-r^','LineWidth',2);grid on;hold on; 

% set(gca,'FontSize',13); 

% xlabel('Deflection [m]');ylabel('Distal Force [N]'); 

% figure(4) 

% plot(tipload,stress./(621*10^6),'-r^','LineWidth',2);grid on;hold on; 

% set(gca,'FontSize',13); 

% xlabel('Tension Force [N]');ylabel('Factor-of-Safety'); 

end 

  

function delta=ChangeInLength(shrinkVec,lengthVec) 

delta=0; 

prevDim=[0 0]; 

  

for i=2:length(lengthVec) 

    if mod(i,2) 

        coord=shrinkVec(ceil(1/2),:); 

        delta=delta+abs(lengthVec(i)-lengthVec(i-1)-

distance(prevDim(1),coord(1),prevDim(2),coord(2))); 

        prevDim=[coord(3) coord(4)]; 

    else 

    end 

end 

end 

  

function c=distance(x0,xf,y0,yf) 

    c=sqrt((xf-x0)^2+(yf-y0)^2); 

end 

  

 

function [x_trans y_trans]=transform(x_o,y_o,x_f,y_f,theta) 

%   Description 

% This function takes rotates the point [x_f, y_f] about the point 

% [x_o,y_o] by angle theta using homogeneous transformations 

  

% Rotation Matrix 

C=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1]; 

% Translation Matrix 

T1=[1 0 -x_o;0 1 -y_o;0 0 1];  

T2=[1 0 x_o;0 1 y_o;0 0 1];  

% Translate [x_o,y_o] to origin, rotate by theta, and translate back to 

% [x_o,y_o] 

XY_trans=T2*C*T1*[x_f; y_f; 1]; 

x_trans=XY_trans(1); 

y_trans=XY_trans(2); 

end 

 
  

5.2 drawrect() 
function null = drawRect(x,y,xoffset,yoffset,h,w,alpha,term,L,tipL) 

%Description 

% This function draws a rectangle with height h, width w, rotated about 

% angle alpha. It also draws tensioning and loading vectors and outputs text 

% at the loading location with their respective value 

  

% xv=[x-w/2 x+w/2 x+w/2 x-w/2 x-w/2]; % x-coordinate vector 

xv=[x x+w x+w x x]; 

yv=[y y y-h y-h y];                 % y-coordinate vector 

alpha=alpha;                       % reverse angle 

% Rotation matrix 

C=[cos(alpha) -sin(alpha) 0;sin(alpha) cos(alpha) 0;0 0 1]; 

% Translation Matrix 

T=[1 0 xoffset;0 1 yoffset;0 0 1];   

  

%rotate angle alpha 

R(1,:)=xv;R(2,:)=yv;R(3,:)=ones(1,5); 

alpha=-alpha; 

XY=T*C*R; 



plot(XY(1,:),XY(2,:),'r','LineWidth',4);hold on; 

if term==1 

    arrow([XY(1,2), XY(2,2)],[XY(1,3), XY(2,3)],'Width',2);hold on; 

    text(XY(1,2), XY(2,3),strcat(num2str(tipL),' N'),'Color',[0 0 1],'LineWidth',2); 

    arrow([XY(1,3), XY(2,3)],[XY(1,4), XY(2,4)],'Width',1);hold on; 

    text(XY(1,4), XY(2,3),strcat(num2str(L),' N')); 

end 

 

arrow() function is left out for brevity but can be downloaded from MathWorks by following this link: 

http://www.mathworks.com/matlabcentral/fileexchange/278 

 


