Soft Robotic Gripper

Alekh and Serena Beri

Diabetic Neuropathy

- 388MM people globally have diabetes, about two thirds with diabetic neuropathy
- About 20 million people in US alone suffer from peripheral neuropathy
- Common neuropathy symptoms include lack of sensation, pain, tingling and numbness in the hands, feet, legs sensitivity to touch on the skin and loss of balance.
- Amputations are a common complication of diabetic neuropathy
- Every year about 71,000 non-traumatic amputations are performed in the U.S. alone

Researchers believe that making lifestyle changes and treating neuropathy before it progresses

can lower these rates by 45 to 85 percent

Our Idea

Problem:

There is a large population of patients with peripheral neuropathy

They are prone to serious injury, burns and complications due to lack of sensation

There is a need for a device to help patients do everyday chores without risks

Objective:

To create a soft flexible gripper that can help patients suffering with neuropathy

Research & Development - 3 stages

- 1. Evaluate linearity of sensors individually
 - a. Temperature sensor between 16 42 degrees C sensitivity of at least .05 to .2 degrees
 - b. Pressure sensor needs to be up to 25 psi
 - c. Flex angle should be 0-180 degrees with accuracy within 1 degree

2. Build a prototype as a working model

- a. Add sensors to microprocessor to build a prototype circuit
- b. Test soft robot in environment and change in parameters

3. Evaluate data

a. Evaluate data in comparison to normal hand

Phase 1: Evaluate Sensor Accuracy

Flex Sensor Resistance vs. Servo Position

A flex sensor is a plastic strip with a conductive coating. As it bends resistance changes, and changes servo position.

Voltage vs. Temperature

The TMP36 sensor has a nominal 750 mV at 25°C (about room temperature)

Body temperature range is 36-37.5 °C

Pressure Sensor linearity

Phase 2: Build a Prototype

Building a soft robot

- 1. Use CAD model to 3D print a mold
- 2. Make the Silicone mixture and pour in the mold
- 3. Remove soft gripper from mold
- 4. Attach to a pressure source

Flex Sensor

Soft gripper is flexible and the flex sensor can be used to give motion feedback

Temperature sensor

Soft gripper is slightly lower in temperature than a normal hand and some correction will be required for any heat loss on contact

Pressure Sensor

Hand pressure on grip is approximately 2.5 V (12.5 lbs), Soft gripper is less and varies with air from 0.25-0.75V (1.25-3.75 lbs)

Conclusion

- It is feasible to make a soft gripper that can function as a hand for neuropathic diabetics
- Sensors for flex, temperature and pressure can help characterize the motion, temperature and grip of the soft gripper
- Using a gripper can help diabetic neuropathic patients minimize risks of any accidents due to lack of sensation
- Future work is required to incorporate wireless sensors to make the soft gripper hand self sufficient