A composite soft bending actuation module with integrated curvature sensing

Citation:

S. Ozel, et al., “A composite soft bending actuation module with integrated curvature sensing,” 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016.

Abstract:

Soft robotics carries the promise of making robots as capable and adaptable as biological creatures, but this will not be possible without the ability to perform self-sensing and control with precision and repeatability. In this paper, we seek to address this need with the development of a new pneumatically-actuated soft bending actuation module with integrated curvature sensing. We designed and fabricated two different versions of this module: One with a commercially available resistive flex sensor and the other with a magnetic curvature sensor of our own design, and used an external motion capture system to calibrate and validate these two approaches. In addition, we used an iterative sliding mode controller to drive the modules through step curvature references to demonstrate the controllability of the modules as well as compare the usability of the two sensors. We found that the magnetic sensor returned noisy but accurate data, while the flex sensor had minor inaccuracies and it was subject to overshoot but did not exhibit notable noise. Experimental results show that this phenomenon of overshoot from the flex sensor causes active feedback control of the bending actuator to exhibit significant positioning errors. This work demonstrates that our soft bending actuator can be controlled with repeatability and precision, and that our magnetic curvature sensor represents an improvement for use in proprioception and closed-loop control of soft robotic devices.