Precise position control of robot arms using a homogeneous ER fluid


N. Takesue, G. Zhang, J. Furusho, and M. Sakaguchi, “Precise position control of robot arms using a homogeneous ER fluid,” IEEE Control Systems, vol. 19, no. 2, 1999.


Semi-closed-loop control of a robot achieves only the control of the angular position of the motor, so it is not clear whether the end-effector is precisely positioned or not. Closed-loop control would improve positioning accuracy, but industrial robots which have elasticity in their driving systems might become unstable easily because of the noncollocated positional relationship between sensors and actuators. This study, which is aimed at realizing high-speed and high-precision closed-loop control, uses an intelligent electrorheological fluid (ER fluid). In the next section, a brief introduction is given with respect to two types of ER fluids and the development of ER dampers. Following this is a description of the experimental apparatus, which consists of an ER damper and a one-link robot arm. A discussion of its mathematical model follows. In addition, the effects of an ER damper to the resonance/antiresonance characteristics of 2-inertia systems are discussed. Next, the design of the hierarchical control system is discussed. Firstly, the design of the inner loop controller for motor velocity control is presented. As an outer loop controller, an H/sup /spl infin// controller is obtained by using a mixed sensitivity design method of robust control theory. Then it is shown that the ER damper makes the design of a high gain controller possible while maintaining robust stability. Finally, the effectiveness of the proposed control method is demonstrated by experiments.